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Abstract 

Two methods are discussed in detail. In the first 
method the triplet relationship is treated using the 
first neighborhood, and the quartet relationship using 
its second neighborhood. For the triplet relationship 
it is found that the reliability 

is enhanced when 

Rh--~ Rk--~ Rh+k 

and large. This conclusion is drawn from formula 
(16) giving the conditional probability of ¢Ph+~k-- 
~h+k using an asymptotic development up to and 
including terms of order N -1/2. For the quartet 
relationship it is found that the reliability that 

tPh "]- ~k  -at- ~OI -- f~Ph+k+! ~ 77" 

given Rh+k--~ Rh+~ = Rk+l--~ 0 is diminished when 

R h = R k --- R!----- Rh+k+ ! 

and large. This conclusion is drawn from formula 
(19) using similar calculations for the triplet relation- 
ship. A heuristic theoretical discussion of this last 
result trying to explain this difference with the usual 
theories is given. In the second method the triplet 
relationship is treated using its first neighborhood. 
These calculations have been done using a 'normal '  
asymptotic development up to and including terms 

0108 -7673 / 89/070463 -06503.00 

of order N -t/2. As a result a formula (28) is obtained 
that is (at least theoretically) able to predict negative 
cosine values. A third method that is proposed where 
one uses the ideas of Patterson superposition will be 
discussed in detail in a forthcoming paper. 

Introduction 

Let us consider an equal-atom structure with space 
group P1. For N atoms with respective position vec- 
tors rl ,  r2,.  • . ,  rN the normalized structure factor Eh 
for the reciprocal-lattice vector b becomes 

N 
Eh = N -~/2 ~ exp (2wib. rj). 

j = l  

For deriving joint probability distributions of struc- 
ture factors we shall consider the atomic vectors r~, 
r 2 , . . . , r N  as random vectors and this leads us to 
consider the random variable 

N 
F.h = N -1/2 Y. exp (2~rib.xj) (1) 

j = l  

where the xj are random variables that range over the 
possible positions of the atomic position vectors r l ,  
r2 , . .  • ,rN. Usually one considers the xj to be mutually 
independent and one imposes each xj to range uni- 
formly over the unit cell. Another approach (Brosius, 
1985) is to observe that all x i - x j  only have to range 
over the set of all Patterson vectors. In order to impose 
this latter condition one can use two methods: (1) 
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one can analyse the Patterson map and search for all 
Patterson vectors, or (2) one can use the density 
function 

f(Xr--Xs) = E [ ( R ~ -  1 ) / ( N -  1)] 
q 

× exp [2rriq. ( x r - x s ) ]  (2) 

where ~q stands for a finite sum [we sum over a 
sufficient number of q values so that we may neglect 
the negative tipples of f(Xr--Xs)]. The first method 
is also equivalent to using a density function similar 
to expression (21) of Brosius (1985); since we cannot 
give an analytical expression for it we shall not con- 
sider this method any further. 

Instead of (2) one could also use a density 

h(xr-Xs)°C f ( x r - X s )  2, (2a) 

that is 

h (x r -x~ )  = Y~ Cq exp [2¢riq. ( x , -  x~)] (2b) 
q 

(B) we divide the total structure into several 
groups of approximately equal atoms and for every 
group of atoms we use a simplified version of (3); 

(C) we use the idea of Patterson superposition to 
construct the total density function; e.g. one might 
consider a total density function of the form 

K1 1-I f ( x j - x l ) f ( x j - x = )  f (x~-x2) ,  (5) 
J 

where K~ is a suitable normalization constant. 
In order to keep this paper within a reasonable 

length we shall discuss here only the first two methods 
for the first neighborhood of the triplet invariant; we 
shall discuss the third method in a forthcoming paper. 
We think that the formulas we obtain from these two 
methods (A) and (B) have a lot of theoretical import- 
ance. Whether they are an improvement of older 
formulas should be decided after practical tests have 
been done. 

where 

Cq= (( R~+q-1)( R ~ -  l )), 
( (R~_ 1)2), (2c) 

In general, however, one expects (Hauptman, 1964) 
that 

C q = ( R ~ - I ) / ( N - 1 ) .  (2d) 

For this reason we prefer to use f ( x , - x ~ )  instead of 
h ( x r -  xs). Finally, notice that the moments calculated 
in § A below do not depend on our assumption that 
the sum in (2) is taken to be finite. For a rigorous 
construction of the associated probability density we 
refer to Brosius (1985). 

In this paper we shall use f(Xr--Xs) given by (2), 
but notice that (in the case of Patterson overlap) 
f(Xr--X~) is a density function that puts different 
weights on the Patterson vectors. As we have already 
noticed in Brosius (1985) the total density function 

K 1-I I - If(xr-Xs) ,  (3) 
r S 

r < s  

where K is a suitable normalization constant, is not 
practical; moreover we also cannot use the asymptotic 
development technique for calculating the joint distri- 
bution of several structure factors if we use the density 
function (3). For all these reasons we must simplify 
expression (3). We propose three main methods for 
doing this: 

(A) we use the density function 

N 

I-I f (x j  - Xl) (4) 
j = 2  

and we let xl range uniformly over the unit cell; 

N 
A. The density function II~=2 f (x j  - xl) 

This is the simplest density function that we may 
consider. It is equivalent to putting the origin in x, 
and writing Eh as 

F-.n = N -1/2 exp ( -2 r r i h .  xl) 

N 

+ N -'/= ~, exp [ -2 r r ih .  (uj + x,)] (6) 
j = 2  

where we let x, range uniformly over the unit cell 
and where we use 

N 

H f(uj)  
j=2 

as a density function for the vectors nj. One can easily 
verify the relations 

(/~h)= O; (/~h exp ( - 2 r r i h . x , ) )  = N-' /2R~ 

( IEhexp( -27r ih .X l ) -N- ' / 2R~ l  2) (7) 

= 1 - [ N ( N - 1 ) ] - ' ( R ~ - I )  2. 

The last relation tells us that ~Ph probably behaves as 
2rrh.  x~ when Rh is great. Of course this is the basic 
reason why ~#h+ q~k-- ~0h+k-----0 for large RhRkRh+k 
values. In order to see how probable the relation 
g'h + q~k -- g~h+k --~ 0 is, we.must calculate the joint prob- 
ability distribution of Eh, Ek and Eh+k. 

We think that it is necessary to give some details 
of the derivation. To this end let us put 

E h  = R 1  e i~l,  Ek = R2e i'p2 and Eh+k = R 3  e i%. 

(8) 

The joint probability distribution P(R~, R2, R3, ¢Pl, 
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~02, ~03) can then be written 

P(R~, R2, R3, ~01, tp2, ~03) 
o o  

=(1/2"tr)6RtR2R3 ~ p~ dp~ . . .  ~ p3dp3 
0 0 

2~r 2~r 
x I dO,. . .  I dO3exp{-ip,  R, cos(~o,-Ol) 

o o 

+ . . . .  i p3R  3 cos (¢P3-- 03)} 

X tP(pI" , P2, P3, 01, 02, 03), 

where 

(9) 

t~)(Pl, P2, P3, 01, 02, 03) 

= ~ dx~{exp [ i(p~N -~/2) cos 0~ + . .  • 

+ i(p3 N-l/2) cos 0~] 

X ~ ( P l ,  P2, P3, 0~, 01, 0~)N-1}, (10) 

where we have put  

0~= 0 ~ - 2 7 r h . x ~ ,  01= 0 2 - 2 7 r k . x ~ ,  

0~ -i- 03 -- 2~r(h + k ) .  Xl, 

• (p,, p2, p3, 0L 01, 

= j" duf (u)  exp { i(p, N -1/2) COS (2 ~'h.  u -  0~) 

+ ' ' '  + i(p3 N-1/2) cos [2 7r(h + k ) .  u - 0:~]}. 

(11) 

Developing 

~ ( P l , . . . ,  0 ~ ) ~ - l = e x p [ ( N - l )  In ~ ( p ~ , . . . ,  0~)] 

asymptot ical ly  one gets after putt ing 

q:,~ = ¢p~ - 2"rrh. x ~ , . . . ,  ¢p~ = q:,3- 2"rr(h + k ) .  x~" 

P ( R 1 , . . . ,  ~t)3) 

-- (27r)6 dx~ p~ dpl . . ,  p3dp3 

x d 0 ~ . . ,  d0~ 

x exp { - ip~R~ cos (q~ - 0~) 

- .  . . -ip3R3 cos ( ~o'3- O~)} 

(12) 

f 
exp / ip~(RhN-~/2) cos 0~ + .  

ip3( R h + k N  -~/2) COS 0~ 

1 N - 1  1 N - 1  1 N - 1  

4 N 4 N 4 N 

N /2 p,o2o3 c o s  + 0 1 -  + o . 

In order  to calculate this integral, we define 

D~ exp(itp~) = g~ exp (i~o~)-(gEN -~/2) 

x exp (2~-ih. xl), • • • 

Daexp(i@3)= g3exp(iq~3)-(R2+kN -1/2) (13) 

x exp [2"rri(h + k ) .  xl] 

@ ~ = @ ~ - 2 ~ ' h . x l , . . . ,  @ ~ = @ 3 - 2 ~ r ( h + k ) . x ~ .  

We then obtain 

P ( g l , . . . ,  tp3) oc ~ dx~ e x p { - D E - D 2 - D ~  

+ 2N-~/2D, D2D3 cos (~b~ + ffl-~b~) 

+O(1 /N)} .  (14) 

Using the relations in (13) we then get 

P( R1, . . . , ¢P3) 

ocJ dxl e x p { -  2 R , -  R 2 -  R 2+ 2R ,R2N -'/2 cos ~o~ 

+ 2R2R2N -~/2 cos ~01+ 2R3R2+kN -~/2 cos ~o~ 

+2N-1/2R1R2R3 cos (~01 + ~02- ~03) 

+ O ( 1 / N - ' / 2 ) } .  (15) 

Let us denote  by P(~o]R~ = R h , . . . ,  R3 = / ~ + k )  the 
condit ional  distr ibution of  ~o = ~0h + ~0k-- ~0h+k given 

= R h , . . . ,  R3 = Rh+k- Then we obtain 

P(q~IR, = R h , . . . ,  R3 = Rh+k) 

oc[1 + 

x a,(2R3+kN -'/2) cos ~o +h.o . t . ]  

x exp (2RhRkRh+kN -1/2 COS ~) (16) 

where a ,  (x) = 1, (x) / Io(x) and where I ,  (x) denotes 
the modified Bessel funct ion of  order  n. The higher- 
order  terms (h.o.t.) in (16) have been neglected, which 
is reasonable  for modera te ly  high R values. If  at least 
one of  the values 2N-1/2R 3, 2N-1/2R 3, 2N-1/2R3+k 
is low, formula  (14) reduces to the well known Coch- 
ran & Woolfson (1955) relation. This remark  shows 
that  formula  (16) predicts that  among the triplets (h, 
k, h + k) with the same (large) RhRkR~+k values, the 
relation ~0h + ~0k-- ~0h+k = 0 is more reliable for those 
triplets for which Rh, Rk, Rh+k are almost equal  than 
for those for which Rh, Rk, Rh+k are strongly different. 
Clearly, formula  (16) may be approximated  well by 

P(~IR, = R h , . . . ,  R3 = Ru+k) 

oC exp [(X+2RhRkRh+kN -~/2) cos ~o], (17) 

where X is the unique root of  the t ranscendenta l  
equat ion 

a,( X )  = a , (2R~N- ' /2)a , (2Ra N -'/2) 

x ot,(2R3+kN-'/2). (18) 

This may seem a bit strange at first glance, but  
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consider the following reasoning. Let 

1+2a  cos ~ + 2 b  cos 2 ~ + 2 c  cos 3 ~ + . . .  

be a probability density function in ~. 
In our case b, c etc. are negligible with respect to 

a (this is true for moderately high R values). This 
may tempt us to write the above density function in 
a form proportional to 

exp (X cos ~). 

We would then obtain 

a l ( X ) = a .  

It may now be interesting to consider the quartet 
invariant q~ = Ch + Ck + qh- %+k+1 for which the cross 
terms Rh+k, Rh+l, Rk+, of its second neighborhood 
are almost 0. Similar calculations to the one per- 
formed before would then give for the conditional 
distribution Pcond(~lR~+k"" 0, Rh+l----- 0, Rk+l--~ 0) 
of ~ p = ~ h - ~ ( ~ k " F ~ l - - ~ h + k + l  given Rh+k~--0, Rh+l--~0, 
Rk+l=0, 

Pcond(~ I Rh+k --~ 0 , . . . ,  Rk+, = 0)  

oc exp{[X- (4 /N)RhRkRiRh+k+,]cos~}  (19) 

where X is the unique root of the equation 

ott( X ) = otl( 2R3 N-l/2)Otl( 2R 3 N -1/2) 

x a~(2g3N-~/2)a~(2g3+k+l)N-~/2. (20) 

This shows that the relation q~--¢r would be less 
reliable for 'moderately high' Rh"- Rk--~ RI--~ Rh+k+, 
values. 

If at least one of the values 2N-1/2R3, 2N-1/2R3, 
1 / 2 0 3  is low, formula (19) 2N-1/2R3, 2 N -  "'h+k+l 

coincides with well known older formulas (Haupt- 
man, 1975; Giacovazzo, 1977; Schenk, 1974). 

For very high values of Rh, Rk, R, and Rh+k+l one 
should calculate the joint distribution more carefully 
since correlation terms of higher order do play a role. 

It is also instructive to consider the determinant 

A4= 

1 Ah Ah+k Ah+k+l 

Ah 1 A k Ak+ I 

Ah+k A+k 1 A, 

Ah+k+l A+k+l AI 1 

where Aq = (Rq-2 1 ) / ( N -  1). In the same way as for 
Karle-Hauptman determinants, see, for example, 
Messager & Tsoucaris (1972), one has A4--> 0. Putting 
A = A h = A k = Ai = Ah+k+l a n d  Ah+ k = Ak+ I = 0 in A 4 
one finds that A4 < 0 for large A values. 

This might be an indication that it would be more 
improbable to have large and equal Rh, Rk, R~ and 
Rh+k+l values when Rh+k-- R~+l = Rk+,--~ 0 than other- 
wise. For quintets and higher invariants a lot of corre- 
lation terms will have to be taken into account. 

B .  T h e  dens i ty  f u n c t i o n  

g ( x l ,  • • • ") X m )  • • • g(XN--m+l,..., X N )  

Let m be an integer number that divides N;  we divide 
the total structure (of N atoms) into substructures of 
m atoms. To put it more precisely we arrange the set 
Xl, x 2 , . . . ,  XN of all atomic random variables in the 
subsets 

{x~, x 2 , . . . ,  Xm}, { X m + ~ , . . . ,  X2m}, • • • ,  

{xN_m+,,... ,xN}. 
For the subset {xi ,x2, . . . ,Xm} we use the density 
function g(x~, x 2 , . . . ,  Xm) defined by 

g(x,,  x 2 , . . . ,  xm)=--~.,  ~-'.f(x,,-x,:) 

x f (x i2-x ,3) . . ,  f(x,,,, - xi,) (21) 

where Km is a normalization constant [we find that 
Km= ( N - 1 ) - "  Y~q (R 2 -  1) m] and where the sum in 
(21) denotes a sum over all permutations 
( i~ , i2 , . . . , im)  of the integers 1 , 2 , . . . , m .  For in- 
stance, for m = 4 one would have 

g ( x , ,  x2, x3,  x4) 

= (K~ -l /3)f(xl  - x2)f(x2-  x3)f(x3- x4)f(x4 - xl) 

+f (x l  - x2)f(x2 - x4)f(x 4 - x3)f(x 3 - -  Xl) 

+ f(Xl--X4)f(x4--x2)f(x2--x3)f(x3--Xl)  (22) 

with 

K4= ( N -  1)-4 Y~ (R 2 -  1) 4. 
q 

The above density function can be represented by a 
'sum' of three diagrams as shown in Fig. 1. Hence 
the three diagrams in Fig. 1 will give a contribution 
when Xl-x2,  Xl--X3, X 1 - - X 4 ,  X 2 - - X 3 ,  X 2 - - X  4 and X 3 - -  

x4 are all Patterson vectors and only the first diagram 
will give a contribution when x~- x2, x2-  x3, x3-  x4, 
and x4-x~ are Patterson vectors whereas Xl-x3 and 
(or) x2-x4 are not Patterson vectors. 

For general m the total density function 
h (x~ , . . . ,  xN) can now be written 

h(Xl,X2, . . . ,XN) = g(xl , . . . ,xm)g(Xm+l, . . . ,X2m) 

X. . . g (xN_ , ,+~ , . . . ,XN) .  (23) 

This form for h ( x ] , . . . ,  XN) indicates that we can use 
an asymptotic development for the characteristic 

I ............ 2 

4 . . . .  3 

1 2 

+ ".\~ + 

4- --~3 

1 ,\ ,2 
\ 

\ ) , <  

4, / \-3 

Fig. 1. Diagrammatic representation of the three components of 
the density function of equation (22). 
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function if N / m  is high enough. We shall now use 
this density function to calculate the joint  distr ibution 
of the first ne ighborhood of  a triplet invariant.  To 
this end let us put 

Eh = R~ e i~', E k  = RE e i'p2, Eh+k = R3 e i~'3. 

We then get for the jo int  probabil i ty distr ibution 
P(RI,  R 2 ,  R 3 ,  ~Ol, q92, q93) 

P(R1, RE,  R 3 ,  q~l ,  q~2, q~3) 

R1R2R3 fo'° fo '~ - (2~.)6 p l d p l . . -  p3dp3 

x d01 • . .  d03  

x exp { - ip lR t  cos ( q h -  0 1 ) + . . .  

- ipaR3 cos (q~3 - 03)} 

x ~(p~ ,  P2, P3, 01,02, 03)N/m (24) 

where 

t ~ ( p l ,  • • • , 03) 

= S dxl • • • d x m g ( X l , . . . ,  Xm) 

x e x p { i p l N  -1/2 ~ cos ( 2 ~ r h . x j - 0 1 )  
j = l  

+.. .+ip3 m-~/2 ~ c o s ( 2 7 r h . x j -  03)}. (25) 
j = l  

Let us define 

/x(h) = (cos 2"rrh .(xl-x2)) 

= ~ dxl.., dx~g(xl,..., Xm)COS [2~h. (Xl-x2)] 

1 ~_z:((R2 - m-, 2 1) (Rq+h- 1 )S)q 
- ( m  l')~=,L" (( 2 - -  R q -  1)m)q 

(h, k) = (cos 2 7r[h. (xt - x3) -~- k.  (x2 -  x3) ]) 

= [ ( m -  1 ) ( m - 2 ) ] - '  

I ~  2 m-"+'' 
x ~ ((R 2- 1)m-s-r(Rq+h2 _ 1)* 

L s = l  r=l 

2 1)r)q[((R2q_l)m)q]-, X ( R q + h +  k -- 

m- I  s - I  
+ E E (( R2-1)m-s(R2+h-1)r 

s=2 r=l 

X ( R q _ k  -- 1 ) s - r ) q [ ( ( R ~  - 1)re}q] -1 . ( 26 )  

We then obtain 

q~(pl, • • •, 03) = 1 - ( m / 4 N ) p 2 [  1 + ( m -  1 ) / x ( h ) ] + . . .  

- ( m / 4 N ) p 2 [ 1  + ( m -  1)/z (h + k)] 

--(im/4NS/2)plpEp 3 c o s  (01 + 0 2 -  03) 

x[1 + ( m -  1)/z(h) + (m - 1)/z (k) 

+ ( m -  1 ) /x (h+k)  

+ ( m -  1 ) ( m - 2 ) / x ( h ,  k)] 

+ O(m/N2) .  (27) 

'Classical '  asymptot ic  development  of  q ~ ( P l , . . . ,  
03) u / ' '  then gives for the condit ional  distr ibution 
P(q~IR, = Rh, R2 = Rk, Ra = Rh+k) of  ~o = 
~0h'4- ~k-- ~h+k given R~ = Rh, .  • •, R3 = Rh+k the fol- 
lowing formula:  

P(q~IR1 = Ru, . . . , R3 = R,,,+k) 

oC exp [2RhRkRh+k(BhBkBh+kN)-~/EAh,k COS q~] 

(28) 

where 

Ah, k = 1 + (m - 1 )[/x (h) + /x(k)  + /x (h  + k)] 

+ ( m -  1 ) ( m -  2)p,(h, k) 

B~,= 1 + ( m -  1 ) / x ( h ) , . . . ,  
(29) 

B2+k = 1 + ( m -  1 ) / x ( h + k ) .  

For m - - - N  1/2, formula  (28) should in principle be 
able to indicate negative cosines. Notice also that  all 
the terms occurring in /x (h ,  k) [(26)] are of  the same 
form of the most  impor tant  term of the B3,o formula  
(Haup tman ,  1964): so in the absence o f ' c h a n c e  inter- 
actions'  (Haup tman ,  1964) we may expect 

p,(h, k) = N-3/2RhRkRh+k COS(¢Ph + ~0k-  (~h+k) 

and 

/z(h) = ( N -  1 ) -1 (R2-1 ) .  

In that  case Ah,k becomes 

Ah,k "~- 1 + N- l /E[  R E + R E + R2+k-  3 

+ RhRkRh+k COS q~] 

SO if COS q~ = - - 1  and RhRkRh+k is large, Ah,k = 0 or 
even Ah,k<0. Notice that  not all averages ( . . .)q 
occurring i n / z ( h ,  k) are different. To see this, let us 
write symbolical ly 

(qr (q+ h)S(q+ h+k) t )q  

for ( ( R 2 _  r 2 I) (Rq+h-- l)S(Rq+h+k - 1)t)q. Then,  after 
using such substi tut ions as m -- q + h or m = q + h + k 
or m = - q  etc., we get 

(qr(q+ h)S(q+ h + k)t)q = (q~(q + h ) r ( q -  k)t)q. 
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Concluding remarks 

We expect that method A will work best for invariants 
like quintets and higher, since then a lot of correlation 
terms of order N -3/2 c a n  be taken into account. 
Method B is expected to work fine for large m values 
(m ~- N-1/2). We think that a combination of method 
A and method B will give still better results, since 
then the correlation terms that normally appear in 
method A will be boosted. We shall explore this in 
a forthcoming paper. 

Finally, let us notice that one can also use another 
approach for calculating triplet phase invariants; in 
this approach one considers the atomic position vec- 
tors to be fixed and the structure factors to be random 

variables of the reciprocal-lattice vectors. For more 
on this we refer to Hauptman (1985) and Gilmore & 
Hauptman (1985). 
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Abstract 

A model is discussed that is able to give a statistical 
interpretation for the B3,o formula of Karle & Haupt- 
man [Acta Cryst. (1957), 10, 515-524] for the space 
group P1. The main idea is to use a suitable probabil- 
ity measure for the interatomic position vectors and 
to 'linearize' the triplet phase invariant. As a result 
of the model a statistical formula is given using a 
'first neighborhood'  of random variables. 

Introduction 

The B3, o formula of Karle & Hauptman (1957) for 
P1 [and Hauptman & Karle (1958) for P i ]  is well 
known among 'direct-methods' crystallographers. It 
gives the value of the cosine of a triplet phase 
invariant when the structure consists of equal atoms 
and if no 'chance interactions' (Hauptman, 1964) 
occur. Unfortunately, when the number of atoms 
increases, the number of these chance interactions 
(or 'near chance interactions' since we have only a 
finite number of Ek values at our disposal) increases 
also, thereby violating the strict validity of the B3.o 
formula. A lot of research has been undertaken to 
modify the B3.o formula (e.g. Hauptman, 1964; Haupt- 
man, Fisher, Hancock & Norton, 1969; Karle, 1970; 
Fisher, Hancock & Hauptman, 1970). All these 
approaches tried to calculate the exact value of the 
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cosine invariant rather than giving a statistical inter- 
pretation of it. 

A first (and up to now the only known) attempt to 
give a statistical interpretation of the ~,o formula was 
given by Giacovazzo (1977). The work of Vaughan 
(1958, 1959) should however also be mentioned for 
other formulas than the B3,o formula. In our opinion 
there are many serious objections to Giacovazzo's 
approach. A more detailed discussion of 
Giacovazzo's paper will appear as a short comment 
(Brosius, 1989). 

Our approach will be entirely different. It is based 
on the observation (Brosius, 1978) that the B3,o for- 
mula comes mainly from the average of 
e x p { 2 7 r i [ h . ( x ~ - x t ) + k . ( x j - x t ) ] }  with a suitably 
chosen density function for x,, xj and xt. This forces 
us to 'linearize' the random variable EhEkE_~h+k ). In 
order to control the wrong results caused by this 
linearization we also use three control variables that 
are  N1/2R~, N~/2R~ and NI/2R~+ k. Together with 
EhEkE-~h+k) we shall consider it as the first neighbor- 
hood (a term first used by Hauptman) of our triplet 
EhEkE-~h+k). 

We would like to mention some recent papers con- 
cerning the calculation of the triplet phase invariant 
where one also uses real averages over reciprocal 
space (or part of it), namely Hauptman (1985) and 
Gilmore & Hauptman (1985). 
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